

EIB Advisory - JASPERS Energy District Heating decarbonisation

Economic appraisal with levelized cost indicators

Francesco Angelini, 17th December 2024

District heating decarbonisation

The levelized cost indicator

Jaspersiji Burger Projest in Baronan Register

- The "levelized cost" is a commonly used concept in energy economics, particularly when comparing alternative technologies
- This is calculated as the ratio between:
 - (i) the *present value* of the project costs over its life cycle and
 - (ii) the *present value* of the supplied power/heat over the same reference period
- By adding to the project costs the shadow cost of 'externalities', the levelized cost can also be estimated in socioeconomic terms
- The use of levelized costs can be particularly useful at the stage of **option** analysis, e.g., to compare different energy decarbonisation options
- It can be used for **simplified cost-benefit analysis**, e.g., comparing the project levelized costs against the next-best alternative (levelized cost of counterfactual)

The levelized cost of heat

The levelized cost of heat (LCOH) can be estimated in:

- **Financial** terms (at market prices): to check affordability and competitiveness (*promoter*'s point of view)
- (Socio-)economic terms: to identify most economically viable solutions (*society*'s point of view)

Financial LCOH	Economic LCOH		
+ CAPEX	+ CAPEX		
+ O&M costs	+ O&M costs		
+ Fuel costs (if relevant)	+ Fuel costs (if relevant)		
+ CO ₂ Emission Trading System (ETS) allowance costs (if relevant)	+ Social cost of CO ₂ emissions		
	+ Social cost of SO_2 , NO_x and PM		
	+ Security-of-supply cost		
 Revenue from power sales (if relevant) 	 Economic value of power sales (if relevant) 		
= Net LCOH (financial)	= Net LCOH (economic)		

A worked example

Estimate the LCOH for a new 20 MWth biomass heat-only boiler for a DH system

- Economic life: 15 years of operations
- Investment cost: EUR 9m; (social) opportunity cost of capital: 5%
- O&M costs: 3% of investment cost p.a.; fuel cost: 20 EUR/MWh
- Load factor: 66%; efficiency: 85%
- Environmental externalities (airborne pollutants): 4.30 EUR/MWhth

EUR	NPV@ 5%	2021	2022	2023	2024	2025	2030	2037
Investment cost	8,367,347	4,500,000	4,500,000					
Fuel costs	25,614,953	-	-	2,720,753	2,720,753	2,720,753	2,720,753	2,720,753
Other O&M costs	2,541,957	-	-	270,000	270,000	270,000	270,000	270,000
Total costs (excl. "externalities")	36,524,257	4,500,000	4,500,000	2,990,753	2,990,753	2,990,753	2,990,753	2,990,753
Shadow cost of CO2 emissions	-	-	-	-	-	-	-	
Shadow cost of airborne pollutants	4,646,360	-	-	493,524	493,524	493,524	493,524	493,524
Total socio-economic cost	41,170,616	4,500,000	4,500,000	3,484,277	3,484,277	3,484,277	3,484,277	3,484,277
Heat Produced (MWh)	1,088,635	-	-	115,632	115,632	115,632	115,632	115,632

Investment

A worked example

- Financial LCOH = EUR 36,524,257 / 1,088,635 MWh = 34 EUR/MWh
- Economic LCOH = EUR 41,170,616 / 1,088,635 MWh = 38 EUR/MWh
- By dividing the net present value (NPV) of the single cost components by the NPV of the energy generated, the levelized cost subcomponents can also be estimated
- By adding the DH distribution cost (network take losses into account too) one can compare the competitiveness against individual heating solutions (e.g. Vs. LCOH of an individual heat pump)

LCOH example – Biomass boiler (EUR/MWh)				
Capital cost	8			
Fuel cost	24			
Other operating and maintenance costs	2			
LCOH – financial	34			
Shadow cost of CO ₂ emissions	-			
Shadow cost of airborne pollutants	4			
LCOH – economic	38			

<u>Disclaimer</u>: the costs do not reflect current market conditions! The example is taken from the European Commission' <u>Economic Appraisal Vademecum</u> (see Annex II on Renewable Energy).

Find out more on our activities:

JASPERS support for the clean energy transition

JASPERS guide to decarbonisation of district heating systems

Francesco Angelini Senior economist

European Investment Bank JASPERS Vienna

f.angelini@eib.org

For info on this webinar and details on the activities of the JASPERS Networking Platform please visit the following websites::

https://jaspers.eib.org/knowledge/index http://jaspers.eib.org/

Or write us at jaspersnetwork@eib.org